
Chapter 9

Counting

9.1 Fundamental principles

The subject of enumerative combinatorics is counting. Generally, there is some set A
and we wish to calculate the size |A| of A. Here are some sample problems:

• How many ways are there to seat n couples at a round table, such that each
couple sits together?

• How many ways are there to express a positive integer n as a sum of positive
integers?

There are a number of basic principles that we can use to solve such problems.

The sum principle: Consider n sets Ai, for 1 ≤ i ≤ n, that are pairwise disjoint,
namely Ai ∩ Aj = ∅ for all i 6= j. Then∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

i=1

|Ai| .

For example, if there are n ways to pick an object from the first pile and m ways to
pick on object from the second pile, there are n+m ways to pick an object altogether.

The product principle: If we need to do n things one after the other, and there
are c1 ways to do the first, c2 ways to do the second, and so on, the number of
possible courses of action is

∏n
i=1 ci. For example, the number of possible three-

letter words in which a letter appears at most once that can be constructed using the
English alphabet is 26 · 25 · 24: There are 26 possibilities for the first letter, then 25
possibilities for the second, and finally 24 possibilities for the third.

The bijection principle: As we have seen, there exists a bijection from A to B if
and only if the size of A equals the size of B. Thus, one way to count the number of
elements in a set A is to show that there is a bijection from A to some other set B
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and to count the number of elements in B. Often there is no need to explicitly specify
the bijection and prove that it is such: At this point in the course, you can omit some
low-level details from the written proofs in your homework solutions, as long as you
are certain that you could reproduce these details if asked to do so. For example, you
can simply state and use the observation that the number of ways to seat n people
in a row is the same as the number of ways to order the integers 1, 2, . . . , n, which
is the same as the number of n-element sequences that can be constructed from the
integers 1, 2, . . . , n (without repetition), which is the same as the number of bijections
f : A → A, for A = {1, 2, . . . , n}. You should always make sure that you yourself
fully understand why such equalities hold whenever you use them! Obviously, if you
don’t, you’ll end up relying on equalities that are simply not true, which is not such
a great idea. If in doubt, write down a complete proof to make sure your reasoning
is correct.

9.2 Basic counting problems

Choosing an ordered sequence of distinct objects with repetition. How
many ways are there to pick an ordered sequence of k objects from a pool with n
types of objects, when repetitions are allowed? (That is, we can pick an object of
the same type more than once.) Well, by the product principle, there are n options
for the first object, n options for the second, and so on. Overall we get nk possible
sequences. What follows is a somewhat more formal argument by induction. Observe
that the number of sequences as above is the same as the number of functions from
a set of k elements to a set of n elements. (Make sure you understand this.)

Theorem 9.2.1. Given sets A and B, such that |A| = k and |B| = n, the number of
functions f : A → B is nk.

Proof. Induction on k. If k = 0 the set A has no elements and there is only one
mapping from A to B, the empty mapping. (Recall that a function f : A → B is a
subset of A × B, and if A = ∅ then A × B = ∅.) We suppose the claim holds for
|A| = m and treat the case |A| = m + 1. Consider some element a ∈ A. To specify a
function f : A → B we can specify f(a) ∈ B and a mapping f ′ : A \ {a} → B. There
are n possible values of f(a) ∈ B, and for each of these there are nm mappings f ′ by
the induction hypothesis. This results in nm+1 mappings f and completes the proof
by induction.

Choosing an ordered sequence of distinct objects without repetition. How
many ways are there to pick an ordered sequence of k objects from a set of n objects
when only one copy of each object is available, so there can be no repetitions? Again
we can use the product principle. Observe that the first object in the sequence can
be chosen from n distinct objects. Once the first one is picked, there are only n − 1
possibilities for the second object. After that there are n− 2 objects to choose from,
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and so on. Overall we get that the desired quantity is

n(n− 1) · · · (n− k + 1) =
k−1∏
i=0

(n− i).

This is called a falling factorial and denoted by (n)k or nk. We again provide a more
formal proof by induction, observing that the number of ways to pick an ordered
sequence of k objects from a collection of n distinct ones without replacement is
equal to the number of one-to-one functions f : A → B, where |A| = k and |B| = n.

Theorem 9.2.2. Given sets A and B, such that |A| = k and |B| = n, the number of
one-to-one functions f : A → B is (n)k.

Proof. Induction on k. When |A| = 0, there is one mapping f as described, the
empty mapping, and (n)k is the empty product, equal to 1. Suppose the claim holds
for |A| = m and consider the case |A| = m + 1. Fix an element a ∈ A. To specify
f we specify f(a) and a mapping f ′ : A \ {a} → B. There are n possible values for
f(a) ∈ B. Consider a specific such value f(a) = b. Since f is one-to-one, no element
of A \ {a} can be mapped to b. Thus f ′ has to be a one-to-one-mapping from A \ {a}
to B \ {b}. By the induction hypothesis, the number of such mappings is (n − 1)m.
The number of possible mappings f is thus n · (n− 1)m = (n)m+1.

Permutations. How many ways are there to arrange n people in a row? How many
ordered n-tuples are there of integers from the set {1, 2, . . . , n}? Haw many distinct
rearrangements are there of the integers 1, 2, . . . , n? How many bijections are there
from the set {1, 2, . . . , n} to itself? The answer to these questions is the same, and
follows from Theorem 9.2.2. A bijection from a set A to itself is called a permutation
of A. The number of permutations of the set {1, 2, . . . , n} is precisely the number of
one-to-one functions from this set to itself, and this number is (n)n = n·(n−1) · · · 2·1.
This quantity is called “n factorial” and is denoted by n!. We can now observe that

(n)k =
n!

(n− k)!
.

It is important to remember that 0! = 1, since 0! is the empty product. Here is a list
of values of n! for 0 ≤ n ≤ 10:

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800

Seating at a round table. We’ve arranged n people in a row, now it’s time to sit
them down. So how many ways are there to seat n people at a round table? Let’s
be precise about what we mean: Two seating arrangements are considered identical
if every person has the same neighbor to her right. In other words, rotations around
the table do not matter. Here is how this problem can be tackled: Fix one person a
and sit her down anywhere. This now fixes n − 1 possible positions for the others:
“first person to the right of a”, “second person to the right of a”, and so on until
“(n − 1)-st person to the right of a”. The number of ways to arrange the others in
these n− 1 positions is (n− 1)!, which is also the answer to the original question.
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Choosing an unordered collection of distinct objects without repetition.
How many ways are there to pick a set of k objects from a set of n objects? Since we
are picking a set, we do not care about order, and there are no repetitions. Notice
that every such set can be ordered in k! ways. That is, each set corresponds to k!
distinct ordered k-tuples. Now, we know that the number of ordered k-tuples that
can be picked from a collection of n distinct objects is (n)k. Thus if we denote by X
the number of sets of cardinality k that can be picked from a collection of n distinct
objects, we get

X · k! = (n)k

X =
(n)k

k!

X =
n!

k!(n− k)!
.

This quantity X is denoted by
(

n
k

)
, read “n choose k”. This is such an important

quantity that we emphasize it again: The number of k-element subsets of an n-element
set is

(
n
k

)
, defined as (

n

k

)
=

n!

k!(n− k)!
=

∏k−1
i=0 (n− i)

k!
.

We can see that
(

n
0

)
=
(

n
n

)
= 1, and we define

(
n
k

)
= 0 when k > n or k < 0.

The number of subsets. We have seen that the number of k-element subsets of
an n-element set is

(
n
k

)
. How many subsets of an n-element set are there overall, of

any size? Yes, it is time to prove the neat formula we’ve been using all along:

Theorem 9.2.3. For a set A, ∣∣2A
∣∣ = 2|A|.

Proof. By induction. When |A| = 0, A = ∅. Hence, A has only one subset (itself)
and the formula holds since 20 = 1. Assume the formula holds when |A| = k and
consider the case |A| = k + 1. Fix an element a ∈ A. A subset of A either contains
a or not. The subsets of A that do not contain a are simply subsets of A \ {a} and
their number is 2k by the induction hypothesis. On the other hand, each subset of
A that does contain a is of the form {a} ∪ X, for X ⊆ A \ {a}. Thus there is a
bijective mapping between subsets of A that contain a and subsets of A \ {a}. The
number of such subsets is again 2k. Overall we get that the number of subsets of A
is 2k + 2k = 2k+1, which completes the proof by induction.

Here is another instructive way to prove Theorem 9.2.3: Consider the set of func-
tions f : A → {0, 1}. These functions assign a value of 0 or 1 to every element of A.
In this way, such a function f uniquely specifies a subset of A. Namely, the elements
x for which f(x) = 1 are the elements that belong to the subset of A specified by
f . This defines a bijection between such functions f and subsets of A. By Theorem
9.2.1, the number of functions f from A to {0, 1} is 2|A|, which proves Theorem 9.2.3.
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We can use Theorem 9.2.3 to derive an interesting identity. We now know that
the overall number of subsets of an n-element set is 2n. Previously we have seen that
the number of k-element subsets of an n-element set is

(
n
k

)
. By the sum principle, we

get
n∑

i=0

(
n

i

)
= 2n.

Choosing an unordered collection of distinct objects with repetition. How
many ways are there to pick a collection of k objects from a pool with n types of
objects, when repetitions are allowed? We can reason as follows: The number of ways
to pick k objects from a pool with n types of objects is the same as the number of ways
to put k balls into n bins. Imagine these bins aligned in a row. A “configuration”
of k balls in n bins can be specified as a sequence of n − 1 “|” symbols and k “*”
symbols, as in

∗ ∗ || ∗ | ∗ ∗ ∗ |

This sequence encodes the configuration where k = 6 and n = 5, and there are two
balls in bin number 1, one ball in bin number 3, and three balls in bin number 4.
How many such configurations are there? A configuration is uniquely specified by the
positions of the k “*” symbols. Thus specifying a configuration amounts to choosing
which of the n + k − 1 symbols are going to be “*”. This simply means we need to
choose a k-element subset from a set of size n + k − 1. The number of ways to pick
a collection of k objects from a pool of n types of objects with repetitions is thus(

n + k − 1

k

)
.

47


